Ion Formation from Alkali Halide Solids by High Power Pulsed Laser Irradiation

Abstract
Ion formation from alkali halide solids caused by the irradiation of high power (some 108 W/ cm2) pulsed lasers is investigated by means of time-of-flight mass spectrometry (LAMMA®). It is shown that the ions are formed directly from the solid state, several uppermost atomic layers being involved; gas phase interactions are negligible. The ion formation rates, however, are in-compatible with the assumption of a quasiequilibrium phase transition, but should be explained in terms of non-adiabatic rate processes discussed in some detail. The light absorption of the transparent halide crystals is assumed to be initiated by multiphoton absorption - free electron production; the further energy transfer being maintained by rapid polaron-Joule-heating. The data are compatible with this model.