Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field

Abstract
The fundamental hypotheses underlying Kolmogorov-Oboukhov (1962) turbulence theory (K62) are examined directly and quantitutivezy by using high-resolution numerical turbulence fields. With the use of massively parallel Connection Machine-5, we have performed direct Navier-Stokes simulations (DNS) at 5123 resolution with Taylor microscale Reynolds number up to 195. Three very different types of flow are considered: free-decaying turbulence, stationary turbulence forced at a few large scales, and a 2563 large-eddy simulation (LES) flow field. Both the forced DNS and LES flow fields show realistic inertial-subrange dynamics. The Kolmogorov constant for the kr, over a length scale r is nearly log-normal in the inertial subrange, but significant departures are observed for high-order moments. The intermittency parameter p, appearing in Kolmogorov's third hypothesis for the variance of the logarithmic dissipation, is found to be in the range of 0.20 to 0.28. The scaling exponents over both r = in a manner consistent with the refined similarity hypotheses. In the inertial subrange, the probability distribution of rr)1/3 is found to be universal. Because the local Reynolds number of K62, R1/3rr4/3/ in Kolmogorov's (1941a,b) original theory (K41), the inertial range in the K62 context can be better realized than that in K41 for a given turbulence field at moderate Taylor microscale (global) Reynolds number Rr. The velocity increments conditioned on r do not follow the refined similarity hypotheses to the same degree as those conditioned on εr.