Extensions of the Rouse Theory of Viscoelastic Properties to Undiluted Linear Polymers

Abstract
The Rouse theory for viscoelastic properties of very dilute solutions is modified for application to undiluted linear polymers. With the effective segment mobility expressed in terms of steady‐flow viscosity, the theory is applied to polymers of rather low molecular weight essentially without further change. In high molecular weight polymers, it is assumed that for modes of motion with relaxation times above a critical value the effective segment mobility drops abruptly, in accordance with the effect of entanglement coupling on steadyflow viscosity as described by Bueche. Properties in both the transition region between glasslike and rubberlike consistency and the rubberlike or plateau region are predicted semiquantitatively with no arbitrary parameters. In an alternative application to the transition region, the average effective friction coefficient per monomer unit can be calculated for both linear and lightly cross‐linked systems.