Principal Plume Dispersion Models: TVA Power Plants

Abstract
The body of information presented in this paper is directed to those individuals who may be concerned with principal plume dispersion models at coal-burning power plants. About 20 years of comprehensive field surveillance and documentation of dispersion of power plant emissions for a varied range of unit sizes, stack heights, and meteorological conditions have determined the Tennessee Valley Authority’s interpretation of principal plume dispersion models. TVA’s experience indicates that as unit sizes are increased and taller stacks are constructed, the plume dispersion model associated with maximum surface concentrations changes. Maximum surface concentrations for principal plume dispersion models were approximately equal for the early small plants. However, the coning model was considered the critical plume dispersion model because the frequency of recurrence of surface concentrations from this model was appreciably greater than other models. There were progressive changes because of an increase in unit sizes and stack heights; the magnitude of maximum surface concentrations from the coning model decreased, and the magnitude (relative to the coning model) of concentrations from the inversion breakup model increased. However, with plumes from newer and larger units with higher stacks, the trapping dispersion model became prominent. Finally, by the time unit size had increased to 900 mw and stack height to about 245 meters, as at Bull Run Power Plant, the magnitude of surface concentrations associated with trapping had increased to such a degree that it became the critical dispersion model identified with power plants of this size.