Physical Properties and Molecular Behavior of Chitosan Films

Abstract
Chitosan films, varying in molecular weight and degree of deacetylation, were prepared by a casting technique using acetic acid as a dissolving vehicle. The physicochemical properties of the films were characterized. Both molecular weight and degree of deacetylation affected the film properties. Powder X-ray diffraction patterns and differential scanning calorimetry thermograms of all chitosan films indicated their amorphous state to partially crystalline state with thermal degradation temperature lower than 280–300°C. The increase in molecular weight of chitosan would increase the tensile strength and elongation as well as moisture absorption of the films, whereas the increase in degree of deacetylation of chitosan would either increase or decrease the tensile strength of the films depending on its molecular weight. Moreover, the higher the degree of deacetylation of chitosan the more brittle and the less moisture absorption the films became. All chitosan films were soluble in HCl–KCl buffer (pH 1.2), no...