Speciation genetics is defined as the study of genetic events and processes that differentiate the probabilities that genetic material from individual members of a population will co-occur in individuals of some future generation. It follows that phenotypic attributes that contribute to this differentiation of probabilities (e.g., mating preferences, sterility, or infertility of individuals from certain types of matings) constitute the phenotype of speciation, and genetic loci that may affect these phenotypic attributes can be considered as speciation genes. The literature on genetic differences between hybridizable species of Drosophila that are responsible for morphological differences, mating preferences, hybrid inviability, and hybrid sterility are reviewed with special reference to the species pair D. mojavensis – D. arizonensis. The case for the involvement of karyotypic changes in speciation in rodents is briefly discussed. It is concluded that no major advance has been made in the speciation genetics of Drosophila since Dobzhansky initiated the field 40 years ago. Yet, the identification of several gene loci that cause hybrid inviability or sterility may open the way to the understanding of reproductive isolation at the molecular level. It is not clear whether this approach will lead to general molecular mechanisms underlying the speciation process.Key words: speciation genetics, hybrid sterility, reproductive isolation, Drosophila.