Abstract
The influence of the light microscopical stains, Calcofluor white and Congo red, on the process of chitin microfibril formation of the chrysoflagellate alga Poterioochromonas stipitata (synonym Ochromonas malhamensis) was studied with light and electron microscopy. There is a concentration-dependent inhibition of lorica formation with both dyes. In the presence of the inhibitors malformed loricae are made, which do not show the usual ultrastructure and arrangement of the chitin microfibrils. Instead of long, laterally associated microfibrils, short rods or irregular networks of subelementary (15-25 .ANG.) fibrils are found. Microbial assembly obviously takes place on the accessible outside of the plasma membrane. There must be a gap between the polymerization and microfibril formation reactions, allowing the stains to bind to the polymerized subunits. Thus, later association of these units to form microfibrils is disturbed. The microfibril-orienting mechanism also depends on normal microfibril formation. A model summarizing these hypotheses is suggested.
Keywords