Abstract
The processes associated with the deformation and fracture of polystyrene tested in uniaxial tension have been studied over a range of strain rates from 1.4 × 10−2 to 4.3 × 10−7 sec−1 and at constant stresses between 4.1 and 2.9 kg/mm2. The effect of strain rate on the surface craze distribution prior to fracture, the fracture stress, the mechanism of nucleation of cracks, and the nature of fracture surfaces associated with slow and fast crack propagation have been determined. The changes in fracture surface appearance have been studied using optical and stereoscan microscopy. The observations are consistent with the model presented in a previous paper. Fracture is preceded by craze formation, cavitation in the craze, coalescence of cavities to form large planar cavities which propagate slowly until a critical stage is reached at which fast crack propagation occurs. The effect of changes of strain rate and material variables on these processes is discussed.