Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation

Abstract
The growth of perfectly hexagonal-shaped ZnO nanorods, with Zn-terminated (0001) facets bounded with [Formula: see text] surfaces, has been performed on nickel-coated Si(100) substrate via thermal evaporation using metallic zinc powder and oxygen. Detailed structural investigations confirmed that the synthesized nanorods are single crystalline with the wurtzite hexagonal phase and preferentially grow along the c-axis direction. Raman spectra of the as-grown ZnO nanorods showed an optical-phonon E(2) mode at 438 cm(-1), indicating that as-grown nanostructures are in good crystallinity with the wurtzite hexagonal phase. The ZnO nanorods were found to show strong band edge emission with very weak or no deep-level emission, as shown by photoluminescence measurements. The clear observation of free excitons at low temperatures (13-50 K) indicates that the as-grown ZnO nanorods are of high quality.