Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia.
Open Access
- 1 March 1975
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 55 (3), 644-654
- https://doi.org/10.1172/jci107972
Abstract
We have examined the mechanism of TCA-soluble orthophosphate (Pi) transfer across the membrane of mature human erythrocytes in normal subjects and in patients with X-linked hypophosphatemia (X-LH). The studies were carried out largely at pH 7.4 and 37 degrees C, in partial stimulation of conditions in vivo. (a) At physiological concentrations (1-2 mM) Pi enters the intact normal erythrocyte down its chemical gradient and under no conditions could we identify a steady-state trans-membrane gradient for Pi greater than 0.6. Calculations of the phosphate anion distribution ratio using the Nernst equation yield theoretical values that closely approximate observed values. (b) Glycolytic inhibitors have little effect on total entry of 32Pi inti erythrocytes but they do affect the intracellular distribution of Pi. In the presence of iodoacetamide, label accumulates almost exclusively in the orthophosphate pool and less than 1% enters the organic phosphate pool. (c) Specific activity measurements in unblocked cells indicate that Pi anion equilibrates first with its intracellular Pi pool. These initial findings imply that neither group translocation, nor energy coupling, influence Pi permeation into the human erythrocytes. (d) The relationship between 32P entry and extracellular Pi concentration is parabolic in the presence of chloride, and linear in the presence of sulfate. The kinetics of concentration dependent entrance cannot be examined and saturability of Pi entry cannot be identified under these conditions. (e) The competitive inhibitor arsenate partially inhibits the initial rate and steady-state flux of orthophosphate in erythrocytes treated with iodoacetamide to inhibit glycolysis. However, a significant portion of Pi transport escapes arsenate inhibition. (f) Activation energies for Pi entry, in nonglycolizing erythrocytes are much higher than those required by simple diffusion in an aqueous system. (g) Neither the inward or outward movement of Pi is modulated by trans-phosphate. These latter findings suggest that transport of phosphate across the human erythrocyte is compatible with slow facilitated diffusion with symmetry for influex and efflux. The transmembrane chemical distribution ratio, and the equilibrium flux of Pi were not different from normal in the X-LH erythrocyte. Nor did the extracellular Pi concentration, arsenate, or temperature affect Pi entry differently in the two types of cells. We dedjce that different gene products serve the diffusional type of Pi transport in the erythrocyte membrane and the saturable component of transepithelial absorption in the gut and kidney. Only the latter is affected by the X-LH mutation. The former is apparently present not only in erythrocytes but also in epithelial tissue, where it can serve the absorption of pharmacologic amounts of Pi in the therapeutic repair of the depleted phosphate pools in X-LH.This publication has 21 references indexed in Scilit:
- Comparative aspects of phosphate transfer across mammalian erythrocyte membranesThe Journal of Membrane Biology, 1973
- Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cellsThe Journal of Physiology, 1972
- Transport of dibasic amino acids by human erythrocytesMetabolism, 1972
- Loss of a Parathyroid Hormone-Sensitive Component of Phosphate Transport in X-Linked HypophosphatemiaScience, 1972
- Tracer kinetic analysis of phosphate incorporation into erythrocytes in vitro. I. A simple model for simultaneous investigation of phosphate transport and exchange in erythrocytes.1972
- Determination on a micro scale of concentration and specific radioactivity of inorganic phosphate ions in whole blood and packed red cellsScandinavian Journal of Clinical and Laboratory Investigation, 1964
- Reactive Sites and Biological TransportAdvances in protein chemistry, 1961
- Human Red Cell Glycolytic IntermediatesJournal of Biological Chemistry, 1959
- Phosphorus Assay in Column ChromatographyJournal of Biological Chemistry, 1959
- THE EFFECT OF ARSENATE ON AEROBIC PHOSPHORYLATIONJournal of Biological Chemistry, 1953