Operation Everest II: maximal oxygen uptake at extreme altitude
- 1 May 1989
- journal article
- research article
- Published by American Physiological Society in Journal of Applied Physiology
- Vol. 66 (5), 2446-2453
- https://doi.org/10.1152/jappl.1989.66.5.2446
Abstract
Chronic exposure to high altitude reduces maximal O2 uptake (VO2max). At extreme altitudes approaching the summit of Mt. Everest [inspiratory PO2(PIO2) = 43 Torr], mean VO2max have been determined to be 15.3 ml.kg-1.min-1 in two subjects who breathed 14% O2 at 6,300 m on Mt. Everest (West et al., J. Appl. Physiol. 54: 1188–1194, 1983). To provide a more complete description of performance near the limits of human tolerance to chronic hypoxia, we measured VO2max in volunteers in an altitude chamber before, during, and after a 40-day decompression to a barometric pressure (PB) of 240 Torr (PIO2 = 43 Torr). In five of eight subjects studied at sea level and PB of 464, 347, 289, and 240 Torr, VO2max was reduced from 4.13 to 1.17 l/min (49.1–15.3 ml.kg-1.min-1) in agreement with the prior study. Although the range decreased, the rank order among the subjects was preserved. Arterial O2 saturation at maximum effort decreased (46% by ear oximetry), but minute ventilation, respiratory frequency, and tidal volume did not. The highest minute ventilation (201 l/min BTPS) was observed at PB of 464 Torr. Arterial PCO2 in three subjects at PB of 240 Torr, at rest, and with maximum effort, averaged 10.3 and 9.6 Torr, respectively. Sustained hyperventilation was crucial to exercise performance during chronic, severe hypoxemia. VO2max was lower after altitude exposure compared with initial sea level values, indicating that exposure had not improved sea level exercise capacity.This publication has 18 references indexed in Scilit:
- Enhanced left ventricular systolic performance at high altitude during operation everest IIThe American Journal of Cardiology, 1987
- Control of ventilation in extreme-altitude climbersJournal of Applied Physiology, 1986
- The influence of cardiorespiratory fitness on the decrement in maximal aerobic power at high altitudeEuropean Journal of Applied Physiology, 1985
- Relationship of hypoxic ventilatory response to exercise performance on Mount EverestJournal of Applied Physiology, 1984
- Hypocapnia and sustained hypoxia blunt ventilation on arrival at high altitudeJournal of Applied Physiology, 1984
- Maximal exercise at extreme altitudes on Mount EverestJournal of Applied Physiology, 1983
- Barometric pressures at extreme altitudes on Mt. Everest: physiological significanceJournal of Applied Physiology, 1983
- Control of ventilation in climbers to extreme altitudeJournal of Applied Physiology, 1982
- Muscular exercise at great altitudesJournal of Applied Physiology, 1964
- Arterial oxygen saturation during exercise at high altitudeJournal of Applied Physiology, 1962