Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
- 1 December 1992
- journal article
- Published by Cambridge University Press (CUP) in Behavioral and Brain Sciences
- Vol. 15 (04), 603-613
- https://doi.org/10.1017/s0140525x00072538
Abstract
The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.Keywords
This publication has 1000 references indexed in Scilit:
- Expression of compartmentation antigen zebrin I in cerebellar transplantsJournal of Comparative Neurology, 1990
- Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cordJournal of Comparative Neurology, 1989
- Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulusSynapse, 1989
- Microneurography for the recording and selective stimulation of afferents: An assessmentMuscle & Nerve, 1988
- Antigenic map of the rat cerebellar cortex: The distribution of parasagittal bands as revealed by monoclonal anti‐purkinje cell antibody mabQ113Journal of Comparative Neurology, 1987
- Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyesJournal of Comparative Neurology, 1985
- Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkeyJournal of Comparative Neurology, 1982
- Corticopontine visual projections in macaque monkeysJournal of Comparative Neurology, 1980
- A unique pattern of localization within the cerebellum of the mouseJournal of Comparative Neurology, 1964
- Functional Localization in the CerebellumA.M.A. Archives of Neurology & Psychiatry, 1955