Cytosolic pH regulation in osteoblasts. Regulation of anion exchange by intracellular pH and Ca2+ ions.
Open Access
- 1 January 1990
- journal article
- research article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 95 (1), 121-145
- https://doi.org/10.1085/jgp.95.1.121
Abstract
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.This publication has 43 references indexed in Scilit:
- Regulation of chloride self exchange by cAMP in cortical collecting tubuleAmerican Journal of Physiology-Renal Physiology, 1986
- Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.The Journal of general physiology, 1979
- Saturation behavior of ascites tumor cell chloride exchange in the presence of gluconateBiochimica et Biophysica Acta (BBA) - Biomembranes, 1979
- The anion transport system of the red blood cell The role of membrane protein evaluated by the use of ‘probes’Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1978
- Temperature-dependent changes of chloride transport kinetics in human red cells.The Journal of general physiology, 1977
- The relationship between anion exchange and net anion flow across the human red blood cell membrane.The Journal of general physiology, 1977
- Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcomaNature, 1976
- Effects of halides and bicarbonate on chloride transport in human red blood cells.The Journal of general physiology, 1976
- Membrane proteins related to anion permeability of human red blood cellsThe Journal of Membrane Biology, 1974
- Basic Requirements for CalcificationNature, 1969