Effects of Drugs Interfering with Dopamine and Noradrenaline Biosynthesis on the Endogenous 3,4‐ Dihydroxyphenylalanine Levels in Rat Brain

Abstract
A chemical assay of 3,4-dihydroxyphenylalanine (DOPA) in nervous tissue is described. The method is based on a rapidly performed isolation of DOPA on small Sephadex G-10 columns, followed by reverse-phase HPLC with a trichloroacetic acid-containing eluent, in conjunction with a rotating disk electrochemical detector. The detection limit of the assay (about 100 pg/tissue sample) permits a detailed investigation of the regional distribution of endogenous DOPA levels in the rat brain. DOPA as well as dopamine (DA) could be quantified in the same chromatographic run. The assay was applied to a study of the effects of α-methyl-p-tyrosine, apomorphine, chlorpromazine, clonidine, γ-butyrolactone, haloperidol, morphine, oxotremorine, pargyline, reserpine, and tyrosine methylester on the concentration of DOPA in the striatum, hypothalamus, frontal cortex, and cerebellum of the rat brain. Drugs known to interact with DA biosynthesis all caused characteristic changes of the DOPA content in the striatum and not in nondopaminergic brain areas. A close correlation existed between drug-induced changes in tyrosine hydroxylase activity and changes in the DOPA content in the striatum. Tyrosine methylester increased DOPA concentrations in all brain areas studied.

This publication has 21 references indexed in Scilit: