Plant Epicuticular Lipids: Alteration by Herbicidal Carbamates
- 1 August 1970
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 46 (2), 307-314
- https://doi.org/10.1104/pp.46.2.307
Abstract
The effect of several carbamates and trichloroacetic acid on the biosynthesis of epicuticular lipids from leaves of pea (Pisum sativum) was tested by chemical and visual methods. The carbamates tested included S-(2,3-dichloroallyl) diisopropylthiocarbamate (diallate), N-(3-chlorophenyl) isopropylcarbamate (chloropropham), S-ethyl dipropylthiocarbamate, and 2-chloroallyl diethyldithiocarbamate. Diallate reduced epicuticular lipids by 50% when the plants were root-treated and by 80% when vapor-treated. These results were supported by scanning electron microscopy and carbon replica techniques with transmission electron microscopy. The ratio of wax lipid components in the diallate-treated plants remained unchanged, with the exception of the primary alcohols, which were reduced. Diallate appears to interfere with the biosynthesis of a precursor to the elongation-decarboxylation pathway of lipid synthesis. N-(3-Chlorophenyl)isopropylcarbamate had no significant effect on total amounts of extractable epicuticular lipids, nor did it alter the structure of the wax formation on the leaves. The scanning electron microscopy micrographs indicated that S-ethyl dipropylthiocarbamate significantly reduced wax formation on pea leaves. 2-Chloroallyl diethyldithiocarbamate altered the structure of the wax formations, but not the total amount of wax (scanning electron microscopy). Trichloroacetic acid had little effect on wax deposition compared to diallate or S-ethyl dipropylthiocarbamate (scanning electron microscopy). The implication of the effect of the carbamates on epicuticular lipids and penetration of subsequent topically applied chemicals is discussed.Keywords
This publication has 3 references indexed in Scilit:
- Biosynthesis of Long-Chain Hydrocarbons. I. Incorporation of L-Valine, L-Threonine, L-Isoleucine, and L-Leucine into Specific Branched-Chain Hydrocarbons in Tobacco*Biochemistry, 1967
- Leaf Epicuticular WaxesScience, 1967
- Mass spectrometry in lipid researchJournal of Lipid Research, 1960