Abstract
The structure of the tooth plates of Protopterus and Lepidosiren was investigated to determine the causes and consequences of postlarval shape change. During growth, the basal area of the tooth plates increases, some cusps become more prominent, and shearing surfaces are sharpened. The jaw articulation restricts the range of movements of the lower jaw, and causes the tooth plates to occlude precisely; the resulting wear patterns are regular. The tooth plates are composed of enamel, trabecular dentine, and petrodentine. A petrodentine column forms the core of a tooth plate; it is flanked by trabecular dentine. Microhardness measurements show that trabecular dentine is comparable in hardness to mammalian dentine, whereas the petrodentine is comparable to enamel. The location and differential wear of these tissues produce the prominent cusps and self‐sharpened blades of the adult tooth plates.

This publication has 14 references indexed in Scilit: