NUMERICAL SIMULATION OF FLUID FLOW AND HEAT TRANSFER IN A SINGLE-SCREW EXTRUDER FOR NON-NEWTONIAN FLUIDS

Abstract
Thermal transport within the channel of a single-screw extruder has been studied numerically for non-Newtonian fluids, the computations art carried out for a given barrel temperature distribution and adiabatic screw. Numerical results are obtained using finite-difference techniques. The results indicate that the temperature variation in the downstream direction has a small effect on the corresponding velocity field, which is determined mainly by the total volume flow rate. It is also found that heat may be transferred from the flowing material to the barrel farther downstream under certain conditions. The residence time distribution is obtained numerically. Screw characteristics are presented in terms of bulk temperature rise versus screw speed