The Secondary Structure and Poly(A) Content of Globin Messenger RNA as a Pure RNA and in Polyribosome-Derived Ribonucleoprotein Complexes

Abstract
The conformation in solution of duck and rabbit globin mRNA, and of the duck mRNA in the mRNA - protein particle, has been investigated by optical methods and also by the use of the dye ethidium bromide which becomes highly fluorescent when intercalated into the double-stranded regions of a nucleic acid. On the basis of the properties of this dye and on the ability of homopolyribonucleotides to form double-stranded structures we have, in addition, developed a simple and sensitive assay for the detection and quantitisation of sequences rich in a particular residue that may be present in an RNA chain. In solution, 45 to 60% of the nucleotides of duck globin nRNA were found to be in bihelical regions. A similar degree of secondary structure was found in rabbit globin mRNA (this paper), as well as in calf lens mRNA and mRNAs from ewe mammary gland (other results). All samples of globin mRNA examined in this work containeda sequence of poly(A), which has poly(U) binding properties similar to that of synthetic poly(a): no specific interaction between the poly(A) sequence and the rest of the molecules can be detected. The fraction of adenosine residues within these poly(A) segments represents 4% in rabbit mRNA and 8 to 9% in duck mRNA. An additional adenosine-rich segment interspersed with guanosine and possibly other residues, was also detected in one duck mRNA sample. The RNA in the duck mRNA - protein particle is also highly structured. The melting profile in the range of 20 to 65 degrees C is quite similar to that of free mRNA and the ability of ethidium bromide to intercalate is reduced to the extent of 70%. Yet the dichroic spectra of free and bound mRNA are significantly distinct. These data suggest that free and protein-bound mRNA May have a very similar degree of secondary structure but with distinct detailed conformation in bihelical regions (change in base tilting for example). Direct evidence has been obtained that proteins stick to the poly(A) segment in the particle since the fraction of adenosine residues detectable by our poly(u) titration procedure is reduced to 50% of that observed in the free mRNA.