A study of effective attenuation coefficient for calculating tissue compensator thickness

Abstract
Dose uniformity throughout the treatment volume is essential to precision radiation therapy. Tissue compensators are often used as a means to eliminate dose nonuniformity resulting from surface contour irregularities. This paper evaluates the accuracy of using an effective attenuation coefficient for calculating the thickness of missing tissue. This coefficient is found to vary strongly with thickness of missing tissue when the initial depth is situated in the buildup region. The use of a single attenuation coefficient produces errors as high as 54% in the calculated compensator thickness when 10-MV x-rays are used. At depths greater than the depth of maximum dose, the attenuation coefficient remains a function of field size, not the initial depth.