Effects of iron-limitation ofEscherichia coli on growth, the respiratory chains and gallium uptake

Abstract
The effects of iron limitation on growth, the composition and function of the respiratory chains, and gallium uptake inEscherichia coli have been studied. Decreasing the iron concentration in a defined medium using Chelex resin gave lower growth yields in both continuous culture and prolonged batch culture. In the former, ironlimited (entering [Fe]≤2.0 μM) cells exhibited diminished respiration rates, respiration-driven proton translocation quotients, and levels of non-haem iron and cytochromes. The cellular concentration of haemoproteinb-590 (a cytochromea 1-like hydroperoxidase) decreased 20-fold on iron limitation, whilst a CO-binding pigment with an absorption maximum in the dithionite-treated form near 500 nm appeared. Gallium(III) (9 μM) added to iron-limited, but not iron-sufficient, cultures diminished growth yields further; cells grown with low entering concentrations of iron took up less gallium than iron-sufficient cells. These results are attributed to the interference by gallium(III) with siderophore-mediated metal uptake. Gallium also stimulated iron uptake and was itself accumulated by iron-sufficient cells, suggesting that gallium(III) also affects the iron transport system(s) of low affinity.