Structural variation in the human genome

Abstract
New technologies have revealed widespread structural variation in the human genome, including copy-number variants, insertions, inversions and translocations. These variants are predicted to comprise millions of nucleotides of heterogeneity within every genome, with important implications for human diversity and disease. The first wave of information from the analysis of the human genome revealed SNPs to be the main source of genetic and phenotypic human variation. However, the advent of genome-scanning technologies has now uncovered an unexpectedly large extent of what we term 'structural variation' in the human genome. This comprises microscopic and, more commonly, submicroscopic variants, which include deletions, duplications and large-scale copy-number variants — collectively termed copy-number variants or copy-number polymorphisms — as well as insertions, inversions and translocations. Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.