Sequences required for delivery and localization of the ADP/ATP translocator to the mitochondrial inner membrane.

Abstract
The ADP/ATP translocator, a transmembrane protein of the mitochondrial inner membrane, is coded in Saccharomyces cerevisiae by the nuclear gene PET9. DNA sequence analysis of the PET9 gene showed that it encoded a protein of 309 amino acids which exhibited a high degree of homology with mitochondrial translocator proteins from other sources. This mitochondrial precursor, in contrast to many others, does not contain a transient presequence which has been shown to direct the posttranslational localization of proteins in the organelle. Gene fusions between the PET9 gene and the gene encoding beta-galactosidase (lacZ) were constructed to define the location of sequences necessary for the mitochondrial delivery of the ADP/ATP translocator protein in vivo. These studies reveal that the information to target the hybrid molecule to the mitochondria is present within the first 115 residues of the protein. In addition, these studies suggest that the "import information" of the amino-terminal region of the ADP/ATP translocator precursor is twofold. In addition to providing targeting function of the precursor to the organelle, these amino-terminal sequences act to prevent membrane-anchoring sequences located between residues 78 and 98 from stopping import at the outer mitochondrial membrane. These results are discussed in light of the function of distinct protein elements at the amino terminus of mitochondrially destined precursors in both organelle delivery and correct membrane localization.