Association of 14-3-3 Proteins to β1-Adrenergic Receptors Modulates Kv11.1 K+ Channel Activity in Recombinant Systems

Abstract
We identify a new mechanism for the beta(1)-adrenergic receptor (beta(1)AR)-mediated regulation of human ether-a-go-go-related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3epsilon proteins is competed by wild type beta(1)AR by means of a novel interaction between this receptor and 14-3-3epsilon. The association between beta(1)AR and 14-3-3epsilon is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The beta(1)AR/14-3-3epsilon association is direct, since it can be recapitulated using purified 14-3-3epsilon and beta(1)AR fusion proteins and is abolished in cells expressing beta(1)AR phosphorylation-deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that beta(1)AR phosphorylation-deficient mutants do not recruit 14-3-3epsilon away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type beta(1)AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both beta(1)AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness.