Fatigue in Rubber. Part II

Abstract
1. An apparatus is described for measuring the modulus and resilience of rubber over a wide range of frequencies. 2. These measurements can be made at any point in the stress-strain curve of the sample. 3. By increasing the power input, the same apparatus can be used to induce high frequency fatigue in the sample. 4. The earlier work with the torsion head apparatus has been confirmed, namely, that internal friction is greatest near zero strain. 5. High frequency resilience is more independent of degree of vulcanization than tripsometer resilience. 6. Modulus tends to increase with frequency. The effect is least with a rubber gum stock and is greater with compounds containing gas black. 7. Resilience decreases with frequency both in gum and gas black compounds. The decrease is more rapid in the gum compounds. 8. Viscous resistance decreases with frequency and becomes constant at higher frequencies. 9. The modulus of both rubber and Neoprene carbon black compounds decreases with fatigue. 10. The change in modulus with frequency in fatigued stocks is exactly analogous to the change before fatigue in rubber, but there is a slight divergence in the case of Neoprene.