On the theory of the wind-driven ocean circulation

Abstract
A surface distribution of stress is imposed on an ocean enclosed by two continental boundaries; the resulting transport circulation is studied between two latitudes of zero surface wind-stress curl, within which the curl reaches a single maximum. Under the assumption that turbulent transfer of relative vorticity has a minimum effect on the mean circulation, inviscid flow patterns are deduced in the limit of small transport Rossby number. Inertial currents, or naturally scaled regions of high relative vorticity, occur on both the eastern and the western continental coasts. Limits on the relative transports of the currents are obtained and found to depend on the direction of variation of the wind-stress curl with latitude, relative to that of the Coriolis accelerations. The most striking feature of the inviscid flow is a narrow inertial current the axis of which lies along the latitude of maximum wind-stress curl. All eastward flow occurs in this midlatitude jet. A feature of the flow which cannot remain essentially free of turbulent processes is the integrated vorticity relationship, since the imposed wind-stress distribution acts as a net source of vorticity for the ocean. Heuristic arguments are used together with this integral constraint to deduce the presence and strength of the turbulent diffusion which must occur in the region of the mid-latitude jet. It is further inferred that the turbulent meanders of the jet must effect a net meridional transport of relative vorticity.

This publication has 5 references indexed in Scilit: