The Intraseasonal (30–50 day) Oscillation of the Australian Summer Monsoon

Abstract
The tropical intraseasonal (30–50 day) oscillation manifests itself in the Australian summer monsoon by a pronounced modulation of the monsoonal westerlies. These 30-50 day fluctuations of the monsoonal westerlies are coherent with rainfall and OLR across northern Australia. The OLR fluctuation originates in the Indian Ocean and systematically propagates eastward at 5 m s−1, consistent with previous studies of the intraseasonal oscillation. The detailed evolution of the intraseasonal oscillation of the monsoon is studied via composites of upper air data in and about the Australian tropics. During the summer periods 1957-87, 91 events were identified at Darwin, Australia. The composite oscillation at Darwin has a very deep baroclinic structure with westerlies extending up to 300 mb. The westerly phase lasts about ten days and lags a similar duration rainfall event by about four days. During the westerly phase, the upper troposphere is warm and the extreme lower troposphere is cool. This structure ... Abstract The tropical intraseasonal (30–50 day) oscillation manifests itself in the Australian summer monsoon by a pronounced modulation of the monsoonal westerlies. These 30-50 day fluctuations of the monsoonal westerlies are coherent with rainfall and OLR across northern Australia. The OLR fluctuation originates in the Indian Ocean and systematically propagates eastward at 5 m s−1, consistent with previous studies of the intraseasonal oscillation. The detailed evolution of the intraseasonal oscillation of the monsoon is studied via composites of upper air data in and about the Australian tropics. During the summer periods 1957-87, 91 events were identified at Darwin, Australia. The composite oscillation at Darwin has a very deep baroclinic structure with westerlies extending up to 300 mb. The westerly phase lasts about ten days and lags a similar duration rainfall event by about four days. During the westerly phase, the upper troposphere is warm and the extreme lower troposphere is cool. This structure ...