Abstract
The arc discharge reactor developped by Kratschmer et all produces a variety of new carbonaceous solids, including fullerenes and different kinds of graphitic cages of nanometric size, which can be hollow or filled with various materials. Complementary to neutron and X ray diffraction techniques, transmission electron microscopy rapidly appeared among the most important techniques for studying the structures of fullerenes and fullerites2−6. Very generally, it allows us to obtain diffraction patterns of micronic size crystallites and the different imaging modes provide an unique tool to investigate in real space the morphology of the crystallites, structural defects faults at microscopic and nanometric scales6−8. It is possible to perform very local chemical analysis and to study chemical environments in order to determine the nature of chemical bonds9. Futhermore, it is possible to study phase transitions through in situ experiments5,10–12 and the behaviour of fullerites upon electron irradiation13. The interest of this technique has appeared even more crucial with the discovery of narotubes14 and their ability to be filled15 since, because of their nanometric size, the electron microscopy is at the moment the unique tool allowing their study and is therefore a challenge in the development of these new materials for applications in nanotechnology.