Robust motion controller design for high-accuracy positioning systems

Abstract
This paper presents a controller structure for robust high speed and accuracy motion control systems. The overall control system consists of four elements: a friction compensator; a disturbance observer for the velocity loop; a position loop feedback controller; and a feedforward controller acting on the desired output. A parameter estimation technique coupled with friction compensation is used as the first step in the design process. The friction compensator is based on the experimental friction model and it compensates for unmodeled nonlinear friction. Stability of the closed-loop is provided by the feedback controller. The robust feedback controller based on the disturbance observer compensates for external disturbances and plant uncertainties. Precise tracking is achieved by the zero phase error tracking controller. Experimental results are presented to demonstrate performance improvement obtained by each element in the proposed robust control structure.

This publication has 9 references indexed in Scilit: