The fine structure of a rectifying electrotonic synapse.

Abstract
The synapses between the lateral giant axon and the giant motor axon found in the abdominal ganglia of the ventral nerve cord of the crayfish Procambarus clarkii are electronic. The junctional membrane rectifies, favoring impulse transmission from lateral giant fiber to giant motor fiber. This rectifying electronic junction consists of closely apposed membranes indistinguishable from ordinary arthropod gap junctions. The apposed membranes contain intramembrane particles that are .apprx. 12.5 nm in width. These particles have a central depression and are arranged in a loosely ordered array with a center-to-center spacing of about 20 nm. The only obvious morphological evidence of asymmetry is the presence of vesicles (about 80 nm in diameter) in the cytoplasm adjacent to the junctional region of the presynaptic lateral giant fiber. Vesicles are not present in the adjacent cytoplasm of the postsynaptic giant motor fiber; mitochondria and smooth tubular endoplasmic reticulum are more frequent in the cytoplasm of the giant motor fiber.