Sperm volume regulation: maturational changes in fertile and infertile transgenic mice and association with kinematics and tail angulation.
Open Access
- 1 July 2002
- journal article
- Published by Oxford University Press (OUP) in Biology of Reproduction
- Vol. 67 (1), 269-275
- https://doi.org/10.1095/biolreprod67.1.269
Abstract
Laser light scatter analyzed by flow cytometry was used to monitor the volume of viable maturing murine spermatozoa. Upon release, dispersion, and dilution, epididymal sperm from fertile heterozygous c-ros knockout mice were smallest in the cauda region and largest in the corpus region. Cauda sperm from both infertile homozygous c-ros knockout and GPX5-Tag2 transgenic mice were abnormally large. When incubated, corpus and cauda sperm from normal mice became slightly enlarged and later returned to a smaller size. This suggests an immediate swelling due to high intracellular osmolality, which triggers a regulatory volume decrease (RVD) that results in a net volume reduction. Normal caput sperm increased in size continuously and became larger than the more mature sperm, indicating a lack of RVD. The ion-channel blocker quinine induced dose-dependent size increases in normal cauda sperm but not in caput sperm. Dose-dependent quinine action on mature sperm also included induction of tail angulation, and suppression of straight-line velocity and linearity. The kinematic effects were more sensitive, with a quicker onset, but they diminished with time in contrast to tail angulation, which intensified. These results suggest that kinematic changes are an early phenomenon of swelling, which gradually accumulates at the cytoplasmic droplet to cause flagellar angulation. Disruption of the epididymal maturation of sperm volume regulation capacity would hinder the transport of sperm in the female tract, and may thereby explain infertility under certain conditions, but may also provide a novel approach to male contraception.Keywords
This publication has 18 references indexed in Scilit:
- Role of quinine-sensitive ion channels in volume regulation in boar and bull spermatozoaReproduction, 2001
- Volume regulation of spermatozoa by quinine-sensitive channelsMolecular Reproduction and Development, 1997
- A Model for Flagellar MotilityInternational Review of Cytology, 1997
- The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis.Genes & Development, 1996
- Swelling-activated organic osmolyte efflux: A new role for anion channelsKidney International, 1995
- A "Geometric Clutch" Hypothesis to Explain Oscillations of the Axoneme of Cilia and FlagellaJournal of Theoretical Biology, 1994
- Heterogeneity of epididymal spermatozoa of the hamsterGamete Research, 1989
- Difference in size between spermatozoa from the cauda epididymidis and the caput epididymidis of the ratReproduction, 1976
- Factors stabilizing bull sperm cell volume and prolonging motility at high dilutionExperimental Cell Research, 1971
- Alteration of cell volume in bull spermatozoa by factors known to affect active cation transportExperimental Cell Research, 1971