Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell
- 15 December 2009
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 75 (24), 7579-7587
- https://doi.org/10.1128/aem.01760-09
Abstract
A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current.Keywords
This publication has 39 references indexed in Scilit:
- Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cellsBiosensors and Bioelectronics, 2009
- Comparison of Electrode Reduction Activities of Geobacter sulfurreducens and an Enriched Consortium in an Air-Cathode Microbial Fuel CellApplied and Environmental Microbiology, 2008
- Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached BiofilmsApplied and Environmental Microbiology, 2008
- Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cellsEnvironmental Microbiology, 2008
- Geobacter sulfurreducens strain engineered for increased rates of respirationMetabolic Engineering, 2008
- Combining biocatalyzed electrolysis with anaerobic digestionWater Science & Technology, 2008
- Growth with high planktonic biomass inShewanella oneidensisfuel cellsFEMS Microbiology Letters, 2008
- Sustainable and efficient biohydrogen production via electrohydrogenesisProceedings of the National Academy of Sciences, 2007
- MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0Molecular Biology and Evolution, 2007
- Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progressInternational Journal of Hydrogen Energy, 2007