Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations

Abstract
The authors present an adaptive method based on the idea of multiple, component grids for the solution of hyperbolic partial differential equations using finite difference techniques. Based upon Richardson-type estimates of the truncation error, refined grids are created or existing ones removed to attain a given accuracy for a minimum amount of work. Their approach is recursive in that fine grids can themselves contain even finer grids. The grids with finer mesh width in space also have a smaller mesh width in time, making this a mesh refinement algorithm in time and space. This document includes algorithm, data structures and grid generation procedure, and concludes with numerical examples in one and two space dimensions.