Abstract
The F-actin distribution was studied during pole cell formation in Drosophila embryos using the phalloidin derivative rhodaminyl-lysine-phallotoxin. Nuclei were also stained with 4'-6 diamidine-2-phenylindole dihydrochloride to correlate the pattern seen with the nuclear cycle. The precursors of the pole cells, the polar surface caps, were found to have an F-actin-rich cortex distinct from that of the rest of the embryo surface and an interior cytoplasm that was less intensely stained but brighter than the cytoplasm deeper in the embryo. They were found to divide once without forming true cells and then a second time when cells formed as a result of a meridional and a basal cleavage. Three distinct distributions of the cortical F-actin have been identified during these cleavages. It is concluded that the first division, which cleaves the polar caps but does not separate them from the embryo, involves very different processes from those that lead to the formation of the pole cells. A contractile-ring type of F-actin organization may not be present during the first cleavage but is suggested to occur during the second.