Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy.
Open Access
- 1 April 1985
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 100 (4), 1091-1102
- https://doi.org/10.1083/jcb.100.4.1091
Abstract
We studied the laminar organization of 3T3 fibroblast cells growing on glass slides by use of total internal reflection illumination to excite fluorescence emission (TIRF) from labeled molecules and stained cellular compartments that are very close to the cell-substrate contact region. Mitochondria, distant from the contact regions and stained with the water-soluble cationic dye, dil-C3-(3), fluoresced only as the glass/cytoplasm critical angle was approached. A similar result was obtained when the nuclei were stained with Hoechst dye 33342. From this measured angle a cytoplasmic refractive index in the range 1.358-1.374 was computed. The plasma membrane of 3T3 cells was stained with dil-C18-(3), and the cytoplasmic compartment was stained with fluoresceinyl-dextran (FTC-dextran) or with carboxyfluorescein. We have demonstrated a high degree of correspondence between the low-reflectance zones in the reflection interference image of a live cell and the TIRF images of both the plasma membrane and cytoplasmic compartment. TIRF photometry of selected contact regions of cells provided data from which the absolute separation of cell and substrate was computed. From a population of 3T3 cells microinjected with fluorescein-labeled actin, motile and adherent interphase cells were selected for study. For adherent cells, which displayed fluorescent stress fibers, the TIRF image was composed of intense patches and less intense regions that corresponded, respectively, to the focal contact and close-contact zones of the reflection-interference image. The intense patches corresponded to the endpoints of the stress fibers. Cells of motile morphology, which formed some focal contacts and extensive close-contact zones, gave AF-actin TIRF images of relatively even intensity. Thin lamellar regions of the cytoplasm were found to contain concentrations of actin not significantly different from other close-contact regions of the cell. The major analytical problem of TIRF microscopy is separation of the effects of proximity to substrate, refractive index, and fluorescent probe concentration on the local brightness of the TIRF image. From our results, it appears possible to use TIRF microscopy to measure the proximity of different components of substrate contact regions of cells.This publication has 40 references indexed in Scilit:
- Membrane-cytoskeleton interactionBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1983
- Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonanceJournal of Microscopy, 1982
- Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recoveryCell, 1982
- Dynamics and topographical distribution of surface glycoproteins during myoblast fusion: a resonance energy transfer studyBiochemistry, 1982
- Cell-substrate contacts illuminated by total internal reflection fluorescence.The Journal of cell biology, 1981
- A cyanine dye distinguishes between cycling and non-cycling fibroblastsNature, 1981
- Preparation and characterization of a new molecular cytochemical probe: 5-iodoacetamidofluorescein-labeled actin.Journal of Histochemistry & Cytochemistry, 1980
- Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectinCell, 1980
- Quantitative reflection contrast microscopy of living cells.The Journal of cell biology, 1979
- Use of dyes to estimate the electrical potential of the mitochondrial membraneBiochemistry, 1978