Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque

Abstract
We studied the effect of eye position on the light-sensitive, memory, and saccade-related activities of neurons of the lateral intraparietal area and area 7a in the posterior parietal cortex of rhesus monkeys. A majority of the cells showed significant effects of eye position, for each of the 3 types of response. The direction tuning of the light- sensitive, memory and saccade responses did not change with eye position but the magnitude of the response did. Since previous work showed a similar effect for the light-sensitive response of area 7a neurons (Andersen and Mountcastle, 1983; Andersen et al., 1985b), the present results indicate that this modulating effect of eye position may be a general one, as it is found in 3 types of responses in 2 cortical areas. Gain fields were mapped by measuring the effect of eye position on the magnitude of the response at 9 different eye positions for each neuron. The gain fields were usually planar or largely planar for all 3 types of response in both areas, indicating that the magnitude of the response usually varies linearly with both horizontal and vertical eye position. A similar observation was made previously for the gain fields of the light-sensitive response of area 7a neurons (Andersen et al., 1985b). Although gain fields sloped in all directions for the population of cells, the gain field slopes of the light- sensitive, memory and saccade responses for individual cells were usually similar. It is proposed that these eye position effects play an important role in making coordinate transformations for visually guided movement.