Expression of an X‐linked HMG‐lacZ transgene in mouse embryos: Implication of chromosomal imprinting and lineage‐specific X‐chromosome activity
- 1 January 1994
- journal article
- review article
- Published by Wiley in Developmental Genetics
- Vol. 15 (6), 491-503
- https://doi.org/10.1002/dvg.1020150608
Abstract
X-chromosome activity in female mouse embryos was studied at the cellular level using an X-linked lacZ transgene which encodes β-galactosidase (β-Gal). Translation of maternal RNA in oocytes is seen as β-Gal activity that persists into early cleavage-stages. Zygotic transcription of the transgene from the maternal X chromosome (Xm) is first found at about the 8-cell stage. By contrast, expression of the lacZ transgene on the paternal X chromosome (Xp) is not seen until later at the 16-32-cell stage. Preferential inactivation of Xp occurs in the mural trophectoderm, the primitive endoderm, and derivatives of the polar trophectoderm, but a small number of cells in these lineages may still retain an active paternal X chromosome. X inactivation begins at 3.5 days in the inner cell mass but contrary to previous findings the process is not completed in the embryonic ectoderm by 5.5 to 6.0 days. Regional variation in β-Gal activity is also observed in the embryonic ectoderm during gastrulation which may be related to the specification of cell fates. Random inactivation of Xp and Xm ensues in all somatic tissues but the process is completed at different times in different tissues. The slower progression of X inactivation in tissues such as the notochord, the heart, and the embryonic gut is primarily due to the persistent maintenance of two active X chromosomes in a significant fraction of cells in these tissues. Recent findings on the methylation of endogenous X-linked genes suggest that the prolonged expression of β-Gal might also be due to the different rate of spreading of inactivation along the X chromosome to the lacZ transgene locus in different tissues.Keywords
This publication has 50 references indexed in Scilit:
- Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivationCell, 1993
- Mammalian X-chromosome inactivation and the XIST geneCurrent Opinion in Genetics & Development, 1992
- A Chicken Transferrin Gene in Transgenic Mice Escapes X-Chromosome InactivationScience, 1987
- Differential expression of α-fetoprotein genes on the inactive X chromosome in extraembryonic and somatic tissues of a transgenic mouse lineNature, 1986
- X-chromosome activity in female mouse embryos heterozygous forPgk-1and Searle's translocation, T(X; 16) 16HGenetics Research, 1983
- A Stem-line Model for Cellular and Chromosomal Differentiation in Early Mouse DevelopmentDifferentiation, 1981
- THE MOLECULAR AND CELLULAR BASIS OF PREIMPLANTATION MOUSE DEVELOPMENTBiological Reviews, 1981
- HGPRT activity changes in preimplantation mouse embryosNature, 1978
- Expression of α-galactosidase in preimplantation mouse embryosNature, 1977
- Differentiation of X chromosomes in early female mouse embryosExperimental Cell Research, 1974