Increased bone marrow allograft rejection by depletion of NK cells expressing inhibitory Ly49 NK receptors for donor class I antigens

Abstract
Natural killer (NK) cells are the major effectors of acute rejection of incompatible bone marrow cell (BMC) grafts in lethally irradiated mice. The immunogenetics of BMC rejection are largely controlled by the coexpression (or not) of inhibitory and stimulatory Ly49 receptors whose ligands are class I major histocompatibility complex (MHC) molecules. The majority of the BMC rejection studies involved low numbers of BMCs that were resisted by host NK cells. In the present study, larger numbers of BMCs were given in which rejection was not detected and the role of different Ly49 NK subsets not presumably involved in the rejection of a particular BMC haplotype was examined. Surprisingly, the data show that the removal of NK cell subsets expressing Ly49 inhibitory receptors for donor class I antigens, which would be predicted to have no effect on the BMC rejection capability, resulted in the marked rejection of BMCs where no resistance was normally seen. These results extend the “missing self” hypothesis to suggest that NK Ly49 inhibitory receptors can both inhibit activation and killing by those cells, but also can in some way influence the function of NK cells that do not express that inhibitory receptor in a cell-cell interaction. This suggests that caution must be exercised before removal of host NK cell subset is applied clinically because enhanced BMC rejection may result. Altering the balance of Ly49 NK subsets may also affect other in vivo activities of these cells.