Numerical modelling of turbulent flow in a combustion tunnel
- 9 March 1982
- journal article
- Published by The Royal Society in Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
- Vol. 304 (1484), 303-325
- https://doi.org/10.1098/rsta.1982.0014
Abstract
A numerical technique is presented for the analysis of turbulent flow associated with combustion. The technique uses Chorin’s random vortex method (r.v.m .), an algorithm capable of tracing the action of elementary turbulent eddies and their cumulative effects without imposing any restriction upon their motion. In the past, the r.v.m . has been used with success to treat non-reacting turbulent flows, revealing in particular the mechanics of large-scale flow patterns, the so-called coherent structures. Introduced here is a flame propagation algorithm , also developed by Chorin, in conjunction with volume sources modelling the mechanical effects of the exothermic process of combustion. As an illustration of its use, the technique is applied to flow in a combustion tunnel w here the flame is stabilized by a back-facing step. Solutions for both non-reacting and reacting flow fields are obtained. Although these solutions are restricted by a set of far-reaching idealizations, they nonetheless mimic quite satisfactorily the essential features of turbulent combustion in a lean propane—air mixture that were observed in the laboratory by means of high speed schlieren photography.Keywords
This publication has 4 references indexed in Scilit:
- Numerical Simulation of Turbulent Mixing Layers via Vortex DynamicsPublished by Springer Nature ,1979
- Product formulas and numerical algorithmsCommunications on Pure and Applied Mathematics, 1978
- Structure of Turbulent Shear Flows: A New LookAIAA Journal, 1976
- Numerical study of slightly viscous flowJournal of Fluid Mechanics, 1973