Neuronal and synaptic measurements in the visual cortex of adult rats after undernutrition during normal or artificial rearing

Abstract
It is possible that the reported effects of early life undernutrition on brain morphology may be due to alterations in mother-infant interactions and not directly to undernutrition. We have investigated this possibility by comparing artificially reared with mother-reared rats. Four groups of black-and-white hooded male rats were reared. These consisted of mother reared control (MRC), mother reared undernourished (MRU), artificially reared control (ARC) and artificially reared undernourished (ARU). Artificially reared rats were raised in isolation away from their mothers from 5 to 21 days of postnatal age. They were fitted with a gastric cannula through which 'milk' was infused automatically. The period of undernutrition lasted from 5 to 25 postnatal days, following which the animals were fed ad libitum until 312 days of age. Rats from each group were then killed by perfusion with buffered 2.5% glutaraldehyde. Pieces of visual cortex from each rat were postfixed in osmium tetroxide and embedded in resin. Stereological procedures at the light and electron microscopical levels were used to estimate the synapse-to-neuron ratios in cortical layers II to IV. Both MRC and ARC rats had about 7000 synapses per neuron. However, this ratio was about 8300 in MRU rats whilst it was only about 5000 in ARU animals. The rearing x nutrition interaction was statistically significant at the 0.1% level. These changes in the synapse-to-neuron ratio were mainly due to alterations in the numerical densities of the synapses rather than that of neurons. These results demonstrate that environmental isolation, as a result of artificial rearing procedures, and concurrent undernutrition during the first three weeks of postnatal life, interact with one another to produce marked morphological changes in the adult rat brain. However, environmental isolation was not, by itself, sufficient to cause permanent changes in interneuronal connectivity.

This publication has 27 references indexed in Scilit: