Abstract
Temperature-sensitive (ts) mutants in a number of complementation groups of herpes simplex virus type 1 (HSV-1) are deficient in DNA polymerase induction at the restrictive temperature. Twenty-two mutants in 15 complementation groups were tested for sensitivity to phosphonoacetate (PAA), a compound that inhibits HSV replication in vivo and the DNA polymerase in vitro. One mutant, tsD9, was resistant to PAA (Pr), but all others were sensitive. Revertants of tsD9 to the ts+ phenotype simultaneously lost PAA resistance. Additional Pr mutants were isolated from ts mutants belonging to several complementation groups of HSV-1. Double mutants (ts Pr phenotype) were used in 3-factor recombination analyses to locate the PAA locus on the genetic map at a position indistinguishable from the ts lesion in tsD9. In all cases, resistance or sensitivity to PAA in vivo was correlated with resistance or sensitivity of DNA polymerase in vitro. These data are compatible with the temperature-sensitive lesion of tsD9 and the determinant of PAA sensitivity both residing in the structural gene for DNA polymerase.