Thermoelectric study of hydrogen storage in carbon nanotubes

Abstract
In situ resistivity (ρ) and thermoelectric power (S) have been used to study the nature of the adsorption of hydrogen in bundles of single-walled carbon nanotubes for H2 pressure P<~1 atm and temperatures 77K<T<500K. Isothermal plots of S vs Δρ/ρ0 are found to exhibit linear behavior as a function of gas coverage, consistent with a physisorption process. Studies of S, ρ at T=500K as a function of pressure exhibit a plateau at a pressure P40 Torr, the same pressure where the H wt. % measurements suggest the highest binding energy sites are being saturated. The effects of H2 exposure at 500 K on the thermoelectric transport properties are fully reversible.