Neuroprotective Actions of FK506 in Experimental Stroke:In VivoEvidence against an Antiexcitotoxic Mechanism
Open Access
- 15 September 1997
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 17 (18), 6939-6946
- https://doi.org/10.1523/jneurosci.17-18-06939.1997
Abstract
The cellular mechanisms underlying the neuroprotective action of the immunosuppressant FK506 in experimental stroke remain uncertain, although in vitro studies have implicated an antiexcitotoxic action involving nitric oxide and calcineurin. The present in vivo study demonstrates that intraperitoneal pretreatment with 1 and 10 mg/kg FK506, doses that reduced the volume of ischemic cortical damage by 56–58%, did not decrease excitotoxic damage induced by quinolinate, NMDA, and AMPA. Similarly, intravenous FK506 did not reduce the volume of striatal quinolinate lesions at a dose (1 mg/kg) that decreased ischemic cortical damage by 63%. The temporal window for FK506 neuroprotection was defined in studies demonstrating efficacy using intravenous administration at 120 min, but not 180 min, after middle cerebral artery occlusion. The noncompetitive NMDA receptor antagonist MK801 reduced both ischemic and excitotoxic damage. Histopathological data concerning striatal quinolinate lesions were replicated in neurochemical experiments. MK801, but not FK506, attenuated the loss of glutamate decarboxylase and choline acetyltransferase activity induced by intrastriatal injection of quinolinate. The contrasting efficacy of FK506 in ischemic and excitotoxic lesion models cannot be explained by drug pharmacokinetics, because brain FK506 content rose rapidly using both treatment protocols and was sustained at a neuroprotective level for 3 d. Although these data indicate that an antiexcitotoxic mechanism is unlikely to mediate the neuroprotective action of FK506 in focal cerebral ischemia, the finding that intravenous cyclosporin A (20 mg/kg) reduced ischemic cortical damage is consistent with the proposed role of calcineurin.Keywords
This publication has 58 references indexed in Scilit:
- Peroxynitrite‐Induced Cytotoxicity in PC12 Cells: Evidence for an Apoptotic Mechanism Differentially Modulated by Neurotrophic FactorsJournal of Neurochemistry, 1995
- Poly(ADP‐Ribose) Synthetase Activation: An Early Indicator of Neurotoxic DNA DamageJournal of Neurochemistry, 1995
- Induction of DNA Fragmentation After 10 to 120 Minutes of Focal Cerebral Ischemia in RatsStroke, 1995
- Calcium: still center-stage in hypoxic-ischemic neuronal deathTrends in Neurosciences, 1995
- Cyclosporin A and FK506 Inhibit Activation-Induced Cell Death in the Murine WEHI-231 B Cell LineCellular Immunology, 1994
- Protective Effect of FK506 on Ischemia/Reperfusion-Induced Myocardial Damage in Canine HeartJournal of Cardiovascular Pharmacology, 1993
- Identification of calcineurin as a key signalling enzyme in T-lymphocyte activationNature, 1992
- Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexesCell, 1991
- Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin.Proceedings of the National Academy of Sciences, 1990
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976