Abstract
Exposure of a nutrient agar medium to the combined action of fluorescent light and air produced toxic factors in the medium which affected the growth of Campylobacter jejuni. Sodium dithionite (5-10 mM), a powerful reducing agent, and catalase were effective in counteracting the injurious action of light and air. Among the quenchers of singlet oxygen tested, only histidine had a beneficial effect on the recovery of C. jejuni in the photo-oxidized medium, while the addition of superoxide dismutase, a hydroxyl radical scavenger such as cysteamine, or the free radical antioxidants tocopherol and butylated hydroxy toluene, did not increase the recovery rate of photochemically injured cells. Histidine (40 mM) and dithionite (5-10 mM) also assisted recovery of C. jejuni inoculated on nutrient agar stored in air in the dark. Cysteamine and dithionite were toxic to Campylobacter when added at concentrations of greater than or equal to 10 mM and greater than or equal to 20 mM, respectively. A high inoculum of C. jejuni could not be recovered in unsupplemented nutrient agar incubated in air but was recovered in atmospheres containing 17 or 21% oxygen plus 10% carbon dioxide. The addition of dithionite, catalase or histidine resulted some colony formation on nutrient agar incubated in air. Among the scavengers tested, only dithionite was consistently able to maintain the viability of C. jejuni on nutrient agar stored in air for longer than 4 weeks. In view of the ability of catalase, dithionite and histidine to enhance the aerotolerance of C. jejuni, it is concluded that various oxygen species might be involved in the toxicity of high levels of oxygen.