Two microsatellite repeat polymorphisms flanking opposite ends of the human glucokinase gene: use in haplotype analysis of Welsh Caucasians with Type 2 (non-insulin-dependent) diabetes mellitus

Abstract
The purpose of this study was to evaluate the role of potential glucokinase defects contributing to susceptibility to Type 2 (non-insulin-dependent) diabetes mellitus in Welsh Caucasians. For this analysis, two microsatellite repeat polymorphisms flanking opposite ends of the gene were employed. For a recently described microsatellite (GCK2), located 6 kilobases upstream of islet exon 1, six different sized alleles were observed, with heterozygosity of 0.50 and polymorphism information content 0.44. Combined heterozygosity with another microsatellite repeat (GCK1) was 0.72. Significant linkage disequilibrium was noted between GCK2 and GCK1, suggesting that haplotypes may be a better predictor of Type 2 diabetes than analysis with either microsatellite alone. Using these two markers, the association with Type 2 diabetes was examined. The frequencies of alleles and genotypes at GCK1 did not differ between the patients with Type 2 diabetes (n=157) and control subjects (n=73). Similarly no differences were observed in GCK2 alleles or genotypes. The frequencies of haplotypes, derived from the two markers, also did not differ between the two groups. To investigate the possibility of minor metabolic effects of glucokinase defects, we also studied the association between the GCK alleles or haplotypes and the response profiles to meal tolerance tests. No association was observed between plasma glucose or insulin responses to meal tolerance tests with GCK haplotypes or alleles. These results suggest that glucokinase mutations in Welsh Caucasians are not major determinants of susceptibility to the common type of Type 2 diabetes.