Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers

Abstract
The magneto-optical (MO) Faraday effect of one-dimensional photonic crystals (1D-PCs) composed of Bi-substituted yttrium–iron–garnet films and dielectric films such as SiO2 and TiO2 films were studied theoretically. Because of considerable localization of light, these media exhibit a very large MO effect. For instance, when the film structure is chosen to be appropriate for supporting the localization of light, the 1D-PC films can possess a huge Faraday rotation angle reaching to −28 deg/μm at λ=1.15 μm. The analysis reveals that the MO characteristics of the 1D-PC films are almost governed by the degree of localization of light, which can be controlled by varying the number of reflection layers in the films.