Effects of Weight Reduction on Obesity STUDIES OF LIPID AND CARBOHYDRATE METABOLISM IN NORMAL AND HYPERLIPOPROTEINEMIC SUBJECTS

Abstract
Considerable controversy exists over the purported role of obesity in causing hyperglycemia, hyperlipemia, hyperinsulinemia, and insulin resistance; and the potential beneficial effects of weight reduction remain incompletely defined. Hypertriglyceridemia is one of the metabolic abnormalities proposed to accompany obesity, and in order to help explain the mechanisms leading to this abnormality we have proposed the following sequential hypothesis: insulin resistance → hyperinsulinemia → accelerated hepatic triglyceride(TG) production → elevated plasma TG concentrations. To test this hypothesis and to gain insight into both the possible role of obesity in causing the above metabolic abnormalities and the potential benefit of weight reduction we studied the effects of weight loss on various aspects of carbohydrate and lipid metabolism in a group of 36 normal and hyperlipoproteinemic subjects. Only weak to absent correlations (r = 0.03 — 0.46) were noted between obesity and the metabolic variables measured. This points out that in our study group obesity cannot be the sole, or even the major, cause of these abnormalities in the first place. Further, we have observed marked decreases after weight reduction in fasting plasma TG (mean value: pre-weight reduction, 319 mg/100 ml; post-weight reduction, 180 mg/100 ml) and cholesterol (mean values: pre-weight reduction, 282 mg/100 ml; post-weight reduction, 223 mg/100 ml) levels, with a direct relationship between the magnitude of the fall in plasma lipid values and the height of the initial plasma TG level. We have also noted significant decreases after weight reduction in the insulin and glucose responses during the oral glucose tolerance test (37% decrease and 12% decrease, respectively). Insulin and glucose responses to liquid food before and after weight reduction were also measured and the overall post-weight reduction decrease in insulin response was 48% while the glucose response was relatively unchanged. In a subgroup of patients we studied both the degree of cellular insulin resistance and the rate of hepatic very low density (VLDL) TG production before and after weight reduction. These subjects demonstrated significant decreases after weight reduction in both degree of insulin resistance (33% decrease) and VLDL-TG production rates (40% decrease). Thus, weight reduction has lowered each of the antecedent variables (insulin resistance, hyperinsulinemia, and VLDL-TG production) that according to the above hypothesis lead to hypertriglyceridemia, and we believe the overall scheme is greatly strengthened. Furthermore, the consistent decreases in plasma TG and cholesterol levels seen in all subjects lead us to conclude that weight reduction is an important therapeutic modality for patients with endogenous hypertriglyceridemia.