The design of a vibration transducer to monitor the integrity of dental implants

Abstract
Bone-anchored titanium implants are being used increasingly to provide support for prostheses replacing missing teeth in edentulous and partially dentate patients. A technique is required to monitor bone formation at the implant-tissue interface during healing, and also to check whether there has been bone loss from around the top of the implant. One possible method is to screw a beam into the implanted fixture and to measure the first flexural resonance frequency of the resulting system. This resonance frequency is affected by both the exposed length of fixture and the stiffness of the interface between the implant and the bone. This paper describes the design of a beam-like transducer for clinical trials of the technique. The sensitivity of the transducer resonance frequency to the changes of interest is dependent on the thickness and length of the beam element. However, the choice of these dimensions is constrained by the need to avoid closely spaced resonances. The performance of different transducer shapes and the influence of the thickness and length of the beam element in the transducer has been studied. The results have been used to finalize a transducer design for the clinical trials.