Abstract
There is a tremendous source of entropic energy available from the salinity difference between river water and seawater, but this energy has yet to be efficiently captured and stored. Here we demonstrate that H2 can be produced in a single process by capturing the salinity driven energy along with organic matter degradation using exoelectrogenic bacteria. Only five pairs of seawater and river water cells were sandwiched between an anode, containing exoelectrogenic bacteria, and a cathode, forming a microbial reverse-electrodialysis electrolysis cell. Exoelectrogens added an electrical potential from acetate oxidation and reduced the anode overpotential, while the reverse electrodialysis stack contributed 0.5–0.6 V at a salinity ratio (seawater:river water) of 50. The H2 production rate increased from 0.8 to 1.6 m3-H2/m3-anolyte/day for seawater and river water flow rates ranging from 0.1 to 0.8 mL/ min. H2 recovery, the ratio of electrons used for H2 evolution to electrons released by substrate oxidation, ranged from 72% to 86%. Energy efficiencies, calculated from changes in salinities and the loss of organic matter, were 58% to 64%. By using a relatively small reverse electrodialysis stack (11 membranes), only ∼1% of the produced energy was needed for pumping water. Although Pt was used on the cathode in these tests, additional tests with a nonprecious metal catalyst (MoS2) demonstrated H2 production at a rate of 0.8 m3/m3/d and an energy efficiency of 51%. These results show that pure H2 gas can efficiently be produced from virtually limitless supplies of seawater and river water, and biodegradable organic matter.