The ion requirement for germination and outgrowth of endospores from the moderately halophilic salt marsh bacterium Halobacillus halophilus was studied. Germination and outgrowth of endospores plated onto nutrient broth was dependent on the salt concentration in the artificial seawater used as the source of ions. Maximal germination and outgrowth were observed when double-concentrated artificial seawater was used. Replacement of chloride salts in the artificial seawater by other salts resulted in a complete loss of germination and outgrowth that was restored upon addition of chloride. To analyze the role of chloride more directly and quantitatively, a defined growth medium was used in which the artificial seawater was substituted by a solution of magnesium sulfate and sodium chloride. Spore germination and outgrowth were strictly dependent on the chloride concentration; maximal germination and outgrowth were observed at ≈ 1.3 M Cl–. Chloride could be substituted by bromide, but not by sulfate or nitrate. Microscopic examinations of single spores clearly showed that germination is the chloride-dependent step. This first report on chloride dependence of spore germination in any endospore-forming bacterium adds another function to chloride in H. halophilus apart from its being essential for the physiology of the vegetative cell.