Ground-State Energy of a Heisenberg-Ising Lattice
- 8 July 1966
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 147 (1), 303-306
- https://doi.org/10.1103/physrev.147.303
Abstract
The Heisenberg-Ising Hamiltonian for rectangular one-, two-, or three-dimensional lattices are considered. The sum is over nearest neighbors and measures the anisotropy of the coupling. Upper and lower bounds for the ground-state energy are established and these bounds apply equally well to lattices of one, two, or three dimensions. Furthermore, it is shown that the ground-state energy per nearest-neighbor pair is nondecreasing as the dimension of the lattice (one, two or three) increases.
Keywords
This publication has 10 references indexed in Scilit:
- Specific Heat ofandin the Neighborhood of Their Critical PointsPhysical Review Letters, 1965
- Critical Point in Liquid-Gas TransitionsPhysical Review Letters, 1964
- Linear Magnetic Chains with Anisotropic CouplingPhysical Review B, 1964
- The free energy of a macroscopic systemArchive for Rational Mechanics and Analysis, 1964
- Pseudospin Model for Hard-Core Bosons with Attractive Interaction. Zero TemperaturePhysical Review B, 1963
- A Lattice Model of Liquid Helium, IIProgress of Theoretical Physics, 1957
- A Lattice Model of Liquid Helium, IProgress of Theoretical Physics, 1956
- Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising ModelPhysical Review B, 1952
- Statistical Theory of Equations of State and Phase Transitions. I. Theory of CondensationPhysical Review B, 1952
- Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec InteractionPhysica, 1949